Fundamental Frequencies of U-Tubes in Tube Bundles

P. M. Morritt

The natural frequencies of U-tubes on multiple supports have been studied as a complement to the author's previous work on the vibration of straight heat-exchanger tubes (reference [1]). A rapid estimation procedure for fundamental frequencies of tubes on symmetrical support spacings has been developed by expressing the frequency in the form

$$f_n \geq \frac{1}{2\pi} \cdot a_n \cdot \frac{1}{L_n^3} \cdot \sqrt{\frac{EI}{\mu}}$$

where the square root contains the tube properties of Young's modulus (cross-sectional second moment, and linear density; L_n is a characteristic length of support spacing; and a_n is a dimensionless number which is a strong function of the support geometry (as expressed by the ratio of bend radius to span lengths) and weak function of Poisson's ratio and of tube axial moment of inertia. a_n has been plotted as a function of the ratio of the bend radius to the straight-span length, for usual values of Poisson's ratio and small axial moment of inertia. The underlying assumptions for the use of such plots are examined and the theoretical basis for the statement of a lower bound is given, in order to show where the use of this method is applicable.

Nomenclature

- ω_n: dimensionless frequency, equals $2\pi f_n \cdot L_n^2$
- μ: mass per unit length of tube
- ν: Poisson's ratio
- E: Young's modulus of elasticity
- f_n: lowest natural frequency (Hz)
- G: shear modulus of elasticity
- I_c: second moment of cross section in bending
- J: polar second moment of cross section
- L_u: unsupported length of straight section (support spacing)
- L_a: unsupported length of U-bend tube centerline
- R: radius of U-bend tube centerline
- μ: mass per unit length of tube
- ν: Poisson's ratio

Introduction

Destructive vibrations in heat exchangers have continued to be a costly and largely unpredictable problem for large segments of American industry (references [2, 3]). The various attempts to model flow-related vibrations (including Y. N. Chen's vortex-shedding model and H. J. Connors whirling model) all depend on the prediction of natural frequencies as the first step [4, 5]. Modeling of resonances induced by pumps or motors also proceeds from the prediction of tube natural frequencies. Similarly, the response to earthquakes depends on natural frequencies. As a result, the prediction of these natural frequencies is an important first step in the design of safe tube bundles.

Straight tubes with arbitrary support spacings, various support lengths and clearances, arbitrary end loads, and fluid-induced inertias in closely packed bundles have been studied experimentally and in computer models, and the results have been represented in tables, graphs, and semi-empirical prediction formulas [1, 6-9]. However, many shell-and-tube and most finned heat exchangers use U-tubes which are more difficult to model. Highly simplified U-tube geometries, with idealized support conditions, have been modeled computationally [10, 11]; a few practical geometries have been tested experimentally [6]. On the basis of the limited available data, "Recommended Design Practices" have been formulated and published with the TEMA Standards [9].

Journal of Pressure Vessel Technology

MAY 1985, Vol. 107 / 207
Background

A practical method for determining the lowest natural frequency of a multi-span tube, is to develop a bounded estimate. This approach has been proven successful for straight tubes [1].

To obtain the lower bound of the estimate, the multi-span system is treated as a series of coupled single-span systems. Each single span is represented as a one-degree-of-freedom system having a natural frequency which is no lower than its fundamental frequency as an uncoupled system (i.e., with the tube cut at the intermediate supports). When we now add the coupling of these single-span systems to each other through the slopes and moments of the tube at the intermediate supports, we can reason that any natural frequency of the multi-span system as a whole can be no lower than the lowest uncoupled fundamental frequency determined for any of the single spans, because the effect of the coupling is to add a constraint to the motion of that span.

Since the natural frequencies of single-span straight beams are easily obtained [12] and corrected for axial load [1], immersion in a liquid [8], and noncylindrical tubes [7], the search for the lowest uncoupled fundamental frequency is very rapid. It is only necessary to examine the tubes with the highest axial compressive load, the longest baffle-to-baffle span, and the longest tubesheet-to-baffle span. The lowest frequency value found is the lower bound and a conservative estimate of the first natural frequency of the multi-span system.

To obtain the upper bound of the estimate, we examine the multi-span with the intermediate supports moved to optimal positions for obtaining the highest possible fundamental frequency; it can be reasoned that this is the spacing at which each individual span would have the same uncoupled fundamental frequency—in the simplest case, this means that all the intermediate spans are the same in length and the spans next to the tubesheets 1.25 times as long; in the presence of large axial compressive loads, the end spans need to be up to 1.41 times as long. The fundamental frequency of each uncoupled span and of the multi-span system as a whole is then the same and is an upper bound for the first natural frequency. The upper bound completes the estimate by indicating its range or accuracy. This reasoning also shows that approximately equal support spacings result in the stiffest design for a given number of supports.

The uncoupled natural frequency of the shortest or stiffest span is often used as an upper bound, but is generally not as useful.

Methodology

The procedure of examining uncoupled single spans yields a rapid and generally tightly bounded estimate of lowest natural frequencies of straight tubes in tube bundles. To extend this method to U-tubes, it is necessary to represent the U-bend as a decoupled subsystem in a similar way. For vibrational deformations in the plane of the U-bend, it is still possible to analyze the U-span as an isolated system. However, for the out-of-plane vibrations, cutting off the U-bend leads to a pendulum with a decoupled natural frequency near zero (depending on orientation with respect to gravity), so that no useful information for a lower bound is obtained. In order to obtain useful results, it is necessary to consider a subsystem of two or more spans.

For the symmetrically supported U-tube, we have chosen a three-span subsystem consisting of the U-bend and the adjacent straight span on each side (Fig. 1). In most practical cases, this subsystem has a lower uncoupled natural frequency than the remaining single-span sections, so that its lowest natural frequency is the lower bound of the natural frequency of each entire U-tube.

The frequency of this three-span subsystem (Fig. 2) can be expressed in the form

\[f_1 = \frac{1}{2\pi} \sqrt{\frac{E I}{\mu L_s^2}} \]

where the square root contains the tube properties of Young's modulus, cross-sectional second moment, and linear density; \(L_s \) is the length of one of the adjacent straight sections; and \(\mu \) is a dimensionless number which is characteristic of the geometry. Expression in this form are familiar for straight tubes [12], with \(\mu \) having a constant value for single-span geometry (such as pinned-pinned beam or clamped-clamped beam). For multiple spans, \(\mu \) becomes a function of the ratios of span lengths, such as the ratio of U-bend length to \(L_s \), or of U-bend radius to \(L_s \). Figure 2 shows the simplest (and most commonly applicable) three-span geometry; Fig. 3 shows the corresponding functional dependence of \(\mu \) on the relative size of the U-bend.

In order to obtain a simple curve, three major simplifications were made:

1. The total length of the straight portions of the tube from the U-bend to the tubesheet was assumed to be large, so that torsional restraint of the straight sections could be neglected. This is a conservative assumption.

2. A constant ratio of the bending \(EI \) to the torsional \(GJ \) was assumed, so that \(GJ \) would not appear in the final equation. This can be justified by further assuming that the ratio of the polar second moment \(J \) of a circular cross section is twice the bending second moment \(J \) (thus neglecting higher-order corrections for the deformation of thin-walled tubes), and that the ratio of the moduli

\[\frac{G}{E} = \frac{1}{2(1 + \nu)} = 0.39 \]

This value is not sensitive to small changes in Poisson's ratio.

208 / Vol. 107, May 1985

Transactions of the ASME
natural frequency. Therefore, the first out-of-plane mode determined \(a_1 \).

For symmetrical supported U-tube, the dimensionless frequency coefficient \(a_1 \) for the three-span subsystem shown in Fig. 2 has been computed and plotted in Fig. 3. This value can be used in the estimation procedure outlined in the foregoing. If other straight spans are not significantly longer than \(L_s \), the natural frequency of the entire tube is

\[
\frac{f_1}{a_1} \approx \frac{1}{2a_1} \frac{1}{L_s^2} \frac{EI}{\mu}
\]

In the special case where we are interested only in the in-plane motion of the tube, this figure may be excessively conservative.

Conclusions

The estimation procedure for fundamental frequencies of straight tubes can be extended to U-tubes, and makes rapid results possible. Thus, the benefits of design changes, such as reducing \(L_s \), can be assessed without extensive structural computations.

Application

The purpose of this paper has been to examine the assumptions implied in modifying simplified plots for estimating the natural frequencies of U-tubes. These assumptions are valid for tubes in ordinary shell-and-tube heat exchangers. Plots for several U-tube geometries have been published in a Technical Note [13] for the use of design engineers.

References